

HappyLab

MIT 6.270
IAP:2012

 “The devil is in the details.” Thus, the Purpose of the HappyLab is to clear up
those tiny details by going over step by step in wiring and programming all of the
sensors and motors used in 6.270. The document will be picture heavy and will try to
be as concise and to the point as much as possible.

Steven Jorgensen
6.270 Organizers

Massachusetts Institute of
Technology

January 2012

6.270 Happy Lab

Required

Required

Table of Contents

0.0 Setting up a Programming Environment

1.0 Intro to HappyBoard

2.0 Uploading a Sample Program

3.0 Happy Test

4.0 Motors and Sensors

4.1 Limit Switches and Buttons

4.2 BreakBeam Package/ Optical Shaft Encoders

4.3 GyroScope Sensor

4.4 DC Motor

4.5 Servo

4.6 IR LED and Phototransistor

4.7 Supplemental: Sharp IR Distance Sensor

4.8 Supplemental: Continuous Servos

5.0 Final TIPS

6.0 Appendix A: Pull-Up Resistors

7.0 Appendix B: Using the Motor Curve as a Design Tool

6.270 Happy Lab

Step 0.0 Setting up a Programming Environment

The following instructions can also be viewed at the wiki page in the 6.270 website: https://scripts-

cert.mit.edu:444/~6.270/wiki/index.php?title=Setting_Up_A_Development_Environment

Windows Computer

Step 1: Install USB Drivers

Go to http://www.ftdichip.com/Drivers/VCP.htm and download the "VCP driver" for your operating system. Then install

the software, following the appropriate install guide. (Which you can download here

(http://www.ftdichip.com/Support/Documents/InstallGuides.htm) You'll need to have a HappyBoard handy.

Step 2: Get AVR Tools

Install WinAVR (http://winavr.sourceforge.net/) This application bundle comes with Programmer's Notepad

 (Start -> All Programs -> WinAVR -> Programmer's Notepad), which you can use to edit C files.

Note: This is where you will be typing and uploading your code.

Step 3: Install GIT

 Install msysgit from http://msysgit.googlecode.com/files/Git-1.7.4-preview20110204.exe ,

Step 4: Get JoyOS

You will have to use Git Bash to download JoyOS. Please read Scott’s Git Introduction for 6.270 under the Course

Information on the main website to download get JoyOS from the Athena clusters.

Important Note: It is incredibly important that you read through the tutorial completely! Cutting Corners will

cause you to take longer.

Step 5: Obtain the Happyboard’s Communication Port

https://scripts-cert.mit.edu:444/~6.270/wiki/index.php?title=Setting_Up_A_Development_Environment
https://scripts-cert.mit.edu:444/~6.270/wiki/index.php?title=Setting_Up_A_Development_Environment
http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Support/Documents/InstallGuides.htm
http://winavr.sourceforge.net/
http://msysgit.googlecode.com/files/Git-1.7.4-preview20110204.exe

6.270 Happy Lab

On Windows the Happyboard will show up as a serial port named COM*. The correct COM port number can be

determined in the Device Manager.

Right click on ”My Computer”, click ”Properties”, then ”Hardware”, then ”Device Manager”. Under the ”Ports (COM &

LPT)” section, the last COM port should be the Happyboard. Alternatively, if you’re using windows 7, just type “device

manager” on the quick search.

In my Windows 7 Device, this is how happyboard shows up:

Step 6: Install a Serial Terminal

Get Termite (http://www.compuphase.com/software_termite.htm)

Open Termite, Under Settings change Port to the port you found above, Baud rate is 19200.

The serial terminal is the way you'll talk to the HappyBoard. When you print text or read user input, it will be through a

serial terminal.

Important Note: In general, only one program at a time can have exclusive rights to talk to the happyboard. This means

you must close any serial terminals before attempting to download a new program!

http://www.compuphase.com/software_termite.htm

6.270 Happy Lab

Step 7: Building and Uploading a Program

1) Connect the HappyBoard to the USB

2) Press and Hold the STOP Button on the happyboard and turn on the happyboard. Wait until Both the red

and green LEDs are solid. Let go of the STOP button after 3 seconds.

3) Make sure your serial terminal is disconnected!!

4) Navigate to the JoyOS Directory you downloaded with git.

5) Open Makefile using Programmer’s Notepad

6) Make the Necessary changes under USERSRC and AVRDUDE_USERPORT

7) Press Tools -> Make Clean -> Make Program to upload your code. Always upload code in this order.

6.270 Happy Lab

Step 1.0 Intro to HappyBoard

This year’s happyboard now have 2 battery packs, one for logic and one for motor power. Other new features have to do

with the firmware, software, and extra hardware on the board. I’ll describe them below

1) Logic Power Supply – Small LiPo battery to power the happyboard’s firmware.

2) Motor Power Supply – Big LiPo battery to power motors and Servos.

Note: These are LiPo batteries. They are known for having a very high power density, which means they

are potentially dangerous if mishandled. Make sure you keep an eye on them while charging, and never leave

them charging unattended or overnight!

Peter’s Note: Batteries may become warm during charging or normal operation, but if they swell or

become very hot to the touch, they should be disconnected and a staff member should be notified. Do not mess

with faulty batteries. Be aware that dangling charging connectors are wired directly to the battery cells, and if

they brush against exposed metal objects like the pins of the servo headers, they can short the battery and burn

out your HappyBoard in a puff of smoke (true story).

3) Frob Knob – also known as a potentiometer! A new hardware modification is that this potentiometer locks at

the center. We’ll tell you how to use this in the HappyLab.

4) Mini USB Port. The other USB end of this cable goes to your computer.

5) Digital Input Pull Up Resistors – Adds a pull-up resistor which provides 5V from Signal to GND for the first 4

sensors on the Digital Input pins. (Pins 0-3).Always keep these switches to ON.

6) STOP button. Essential for the programming routine

7) GO button. Essential for the start-up routine unless otherwise specified by the main server.

8) Digital Inputs/Outputs - only digital sensors can go in these slots (eg: limit switches, push buttons) From Left to

right the pin slots are SIGNAL, POWER, and GND. In addition, these pins can act as Digital Outputs of HIGH or

6.270 Happy Lab

LOW. This is useful if you want to use LEDs to indicate status or do testing. Spans from 0-7. All of the pins have a

pull-up resistor. By default, pins 0-3 have their resistors connected.

9) Analog Inputs. Analog Inputs go here (eg: Gyroscopes, Sharp Distance Sensor). Although Digital Inputs can be

plugged in these ports, it is highly recommended that you separate the inputs. Spans from 8 to 23. All of the

pins have a pull-up resistor. By default, pins 20-23 have their resistors connected (Pull ups are switch ON).

10) Servo Inputs. NOTE! This a SERVO motor is different from a DC Motor in this case. Servo motors in 6.270 are

positional servos with a range from 0-180 degrees. However, you can also make them continuous by breaking

the mechanical stop inside. Regardless, only servos connect here. You can connect 6 Servos. From top to

bottom, the pins are GND, PWR, SIG.

11) Motor Drivers – These control the speed of the DC motor. Each Driver can control 2 motors, and the

happyboard supports up to 3 drivers. In the picture above, I only have 1 motor driver so I can only control 2

motors.

12) Pull Up Resistors – Adds a pull up resistor from Signal to GND for the last 4 inputs on the Analog Input pins. (Pins

20-23). By default, they are all switched to ON.

13) DC Motor Pins. You can only connect 6 DC motors to the happyboard from MOT01 to MOT05. For each motor

connection there are 3 pins. Only 2 of these matters. From Left to right it is POS, n/a, NEG.

IMPORTANT: In this case only, POS and NEG are interchangeable your motors would spin the other way

if it the connection is inverted. IT IS INCREDIBLY IMPORTANT YOU GET A SYSTEM FOR FIGURING OUT

WHICH PIN GOES WHERE. Matches have been lost due to lack of convention.

14) Encoder inputs – These are high-speed digital inputs that can be used with rotational shaft encoders to measure

motor speeds and distances. From left to right, Pin Slots are still SIGNAL, POWER, GND. Spans from 24-27

6.270 Happy Lab

Step 2.0 Uploading Sample Programs

Now we will try to make sure you can navigate JoyOS and upload a sample program.

1) Open frob_test.c under the tests folder using Programmer’s notebook(or your choice of development tool).

2) Try to read the code and see if you can understand what it’s trying to do. It’s ok if you can’t.

3) Save the file.

4) Open Makefile

5) Change USERSRC = user/robot/umain.c

6) To USERSRC = tests/frob_test.c

Note: This shows how you can use the tests files within JoyOS to check other code snippets. Hopefully

you realize that you don’t have to upload from user/robot/umain.c

7) Save Makefile

8) Upload the code using the appropriate steps depending on which operating system you are using.

9) After Uploading the code. Turn off your happyboard

Open your Serial Terminal. Make sure it is connected to the happy board. If you’re using termite, it should look:

10) Turn on your Happyboard. It should will run usetup(void) for the start up routine. Wait until it tells you to press

the GO button on your happyboard.

11) By now, numerical print out of the frob knob’s value should be visible. Note: This is super helpful for figuring out

gains, empirical settings, and other calibration needed for your robot.

12) Change USERSRC = tests/frob_test.c back to USERSRC = user/robot/umain.c

IF you made it this far, CONGRATS! You’re ready to spend the next month trying to program a winning robot!

IF NOT! Be sure to find a 6.270 organizer who can help you out.

6.270 Happy Lab

Step 3.0 HappyTest

<STOP>
Before proceeding, you need to know that there’s a special way to test all of your motors and sensors. It’s called happy

test. For all of the sensors we will be doing, except for the gyroscope and the IR Sharp Distance Sensor, you can simply

upload one program to test them all.

Navigate to user/happytest/happytest.c

Follow Step 2.0 Uploading Sample Programs to upload happytest.c appropriately to your happyboard.

Open your serial terminal and you’ll see that you can test Servos, Motors, Digital Inputs, Analog Inputs, and Encoder

Inputs.

Commands:

Run a test by pressing GO.
Skip a test by Pressing STOP
End a test by Pressing STOP

Frob Knob- Changes Analog/Digial Inputs to explore & the Motor and Servo Outputs

Just try running it and appreciate its beauty.

</STOP>

6.270 Happy Lab

Step 4.0 Motors and Sensors

IMPORTANT NOTE: If you don’t know how to solder or strip a wire, ask to be taught by any of the organizers.

4.1 Limit Switches and Buttons
Background info: Switches and Buttons are perhaps the most intuitive sensors. They are digital which means they only

have a binary state (1 or 0). In 6.270, you’ll most likely encounter two types of switches: SPST (Single Pole Single Throw)

and SPDT(Single Pole Double Throw)

SPST – Only has one terminal. If it is activated, the circuit is complete or CLOSE , otherwise it is disconnected or OPEN.

SPDT – Has 3 terminals. Common(“C”), Normally Closed (NC) and Normally Open (NO). When the switch is activated,

Common is connected to Normally Open, otherwise it is connected to Normally Closed. SPDT can be treated as a SPST if

the Normally Closed terminal is ignored as shown below:

Wiring Diagram

After doing the necessary wiring, remember that this is a Digital Input. Which means it can be plugged in anywhere from

pin slot 0 to pin slot 23. It is recommended however, that you plug it in pins 0-7.

Programming a Limit Switch: Luckily, it’s easy to program a limit switch. Since it is an input, all we have to do is read it

using the command digital_read(#PIN_number). Here’s a sample Snippet. Try running this using your serial terminal:

Open user/robot/umain.c Try entering this piece of code under umain(void):

 Remember to have your pullup switched to ON, on the digital inputs.

6.270 Happy Lab

4.2 BreakBeam Sensor Package/Optical Shaft Encoders
IMPORTANT NOTE: Please be careful when wiring the optical shaft encoders. There are 4 wires and a 330Ω resistor

connected. In addition, it can only be connected on pin slots 24-27.

Background info: The breakbeam sensor has an infrared LED (Light-Emitting-Diode) and a Phototransistor that is

sensitive to light. When an opaque/solid object blocks the path of the light, the light beam “breaks” and the resistance

value changes. This becomes very useful when you want to keep track of how many times the light has been broken. You

can then keep track of how many times a wheel has turned.

Wiring Diagram: In electronic schematics, a Diode is depicted as:

Locate the Diode Symbol. Look at it from the bottom and make sure it is oriented as specified below:
Bottom View

The diagram below clearly depicts where to solder each pins. Be very careful and don’t forget the 330ohm resistor on
the LED side. “E” is for emitter and “D” is for detector. A nice way of thinking where the wires go is that the GNDs are

diagonal from each other.
Back View:

6.270 Happy Lab

Programming shaft encoders

On your happyboard remember that encoders can only go to pins 24-27.

Luckily for you, there is only one simple command that brings up the value of the encoder and it is called

encoder_read(PIN_NUMBER). Calling this function returns an integer value. In my case I used pin number 25.

Use happytest to try see if your encoder works or alternatively, try running your own snippet

Open user/umain.c Try entering this piece of code under umain(void):

To reset the encoder value to 0, use the void command encoder_reset(PIN_NUMBER);

Run your serial terminal and try repeatedly breaking the infrared light with an opaque object. Preferably, use a lego

pulley as shown below:

If you wired everything appropriately and entered the code, it should print something very similar to:

Important Note: Notice how the encoder only knows how to count up. There is no sense of direction for a simple break
beam encoder. If you absolutely need to measure the number of rotations AND direction, there is a way to do this using
2 break beam sensors. It's still experimental though, so talk to a TA for more info.

6.270 Happy Lab

4.3 GyroScope Sensor
Background Info: A Gyroscope is an analog sensor that figures out the angular position of your robot. A Gyroscope is an
analog sensor that measures how fast your robot turns. Why do you care how fast your robot is turning? If you
integrate the rotational velocity with respect to time (radians per second), you end up with the angle your robot is
heading (radians), which is very important for navigation! The Happyboard handles the integration for you, so you can
think of the gyro as measuring the robot's heading.

Important Limitation: Since we integrate the gyroscope's measurement, any small amount of noise in the signal adds up,

which means the value returned by gyro_get_degrees() will slowly drift over time.

Being analog, this means it can only go from pins 8-23. Gyroscopes only measure the rotation about an axis

perpendicular to the plane of the gyro board. There’s an entire description of how gyroscopes work using the course

notes on the class website. For practicality reasons, there’s no need to know how the magic black box works.

Important Note: The gyroscope itself doesn’t necessarily have to be connected on your happyboard. It can be placed

anywhere on the robot but remember that the gyroscope will only measure rotation about an axis perpendicular the

gyroboard.

Wiring a GyroScope:

There are only 3 terminals needed to wire a gyroscope: Output, Power, and Ground.

Remember that the Gyroscope is an analog input so it can only connect from pins 8 to 23. We recommend using pin

20,21, 22 or 23 with the pull-up resistor switched OFF for that pin.

6.270 Happy Lab

Programming a GyroScope:

It’s probably easier to navigate to user/gyrotest/umain.c to get the sample code for a gyroscope.

The boxes above show the essential code you need to get the value of the gyroscope output. Everything else is sugar

Box 1: These are constants. It is good programming practice to name all the constants you need. This significantly cleans

your code. GYRO_PORT specifies where the gyroscope is plugged. LSB_US_PER_DEG (shorthand for least-significant-bit

microseconds per degree) is essentially a constant conversion factor. This needs to be changed slightly for every

gyroscope.

Box 2: gyro_init(Port#, Conversion_Constant, MiliSecond_Calibration_Time) The last argument of gyro_init tells

happyboard how long must it sample the nominal voltage value of the gyroscope. 500ms is good enough. More than

1000ms is probably overkill and unnecessary.

BOX 3: gyro_get_degrees() returns the degree heading where counterclockwise is positive. The value continues to
increase even after a complete turn eg: After 2 complete turns, gyro_get_degrees() will return 720. When gyro_init is
running (e.g. for 500ms), make sure not to move your robot, or it will mess up the calibration.

Run the code and look at your serial terminal. It should print out the Theta values of the gyroscope. Try rotating the

robot in place:

6.270 Happy Lab

Important Note: You might notice that even though the gyroscope is stationary, the values increase/decrease over time.

This is called “drifting.” It is important to then calibrate our gyroscope.

Calibrating a GyroScope

Step 1:Upload the gyrotest code from user/gyrotest/umain.c

Step 2: Place the Robot on a rotating platform/chair. Ensure that the gyroscope is parallel to the ground. This is very

important.

The chairs in the lab are slanted so feel free to use this setup to calibrate your robot. I used an Android App to level it. You

can use traditional Levels or a smart phone app.

Step 3: Take note of your starting position. Turn on the robot while it is connected to your computer. Open the serial

terminal and make sure the robot is in its nominal value (Make sure it’s printing out 0 Degrees or it rounds to 0.)

Step 4: Disconnect the MiniUSB cable and spin the platform 10 times. Plug the USB cord back in to your computer. If it
doesn’t update, disconnect and reconnect using the terminal. If you can’t get this to work, Just have the USB cable
plugged in the entire time. Careful as the wire tends to gets tangled to itself.

 This is what I got:

6.270 Happy Lab

Step 5: Use the following ratio to figure out your new LBS_US_PER_DEG constant:

 =

Solve for x:

In my case I get x = 1452500

Step 6: Use this new value and repeat the experiment. See if you get closer to 3600 after 10 turns.

After 10 turns, I got 3605. Theoretically it should have been 3600. We have an error of 5 degrees now. This is pretty

good because before, we were off by 135 degrees.

Before calibration our error was

After Calibration our new error is

Important Note: Calibration of the LSB_US_PER_DEG constant has nothing to do with drift. It is just calibrating the

multiplier of the rotation angle. Let's say your LSB_US_PER_DEG is too small. When you turn your robot 180 degrees,
you'll get some larger measured value, say 200 degrees. Now if you turn your robot back 180 degrees the opposite

direction, you'll end up back at 0. But if you had continued 180 degrees in the same direction, you would have gotten a
reading of 400 degrees instead of 360! This isn't time-induced drift (which is caused by integration), but rather rotation-

induced drift: the more you rotate, the worse your angles get

Supplemental: Try also rotating it 10 times in one direction, and 10 times back. See how far it is off from 0.

6.270 Happy Lab

4.4 Wiring and Programming a DC Motor
Background Info:

DC motor is short for (Direct Current Motor). The 6.270 motors used this year have a high RPM (Revolutions Per

Minute) and a low Torque. For DC Motors speed and torque are inversely related to one another. The higher the RPM is,

the lower the torque available and vice versa. This tradeoff is usually addressed using gear reductions (Low RPM, High

Torque or high RPM and LOW torque). Since your robot will require high-torque tasks and the DC motors have room to

trade off RPM, it is advisable to use a gearbox to find the proper balance.

 The speed of the motor output can also be controlled using a method called PWM (Pulse-Width-Modulation). In

essence, a motor will be switched ON and OFF over a period of time. By limiting the amount of current going through

the motor, you can then control the motor’s duty cycle(how long a motor is turned ON over a set period of time). For

example, operating the motor at 50% duty cycle means that the motor will have 50% of its original RPM and 50% of its

original torque output. Take note that because we are essentially decreasing the voltage input by 50%, we are only

decreasing the motor’s overall capability by 50% to get a desired speed. Changing RPM using PWM does not magically

grant extra torque. You can think of PWM as a scaling factor of RPM and Torque.

Wiring the Motor

Motors are wired very simply as follows:

Each terminal gets its own wire.

When plugging it to the motor ports, the motor doesn’t really care which is positive and which is negative, it will operate

regardless. However, it is highly recommended you select your own convention and stick to it. Flipping the connection

will flip the direction of the motor!!

6.270 Happy Lab

Programming a Motor:

Look at your happyboard and locate your motor drivers. Look at box #11. The image below has only 1 Motor Driver on

the left most side, so only motorpins 0 and 1 are activated.

Operating the motor only requires one command: motor_set_vel(PORT_NUMBER, MOTOR_SPEED). Port Number is self

explanatory which ranges from 0-5. MOTOR_SPEED ranges from -255 (full reverse) to 255(full forward) and 0 is stop.

Use happytest to see if your motor works.

Open user/robot/umain.c Try the following code:

Notice how the motor ramps up to 255 and ramps down to -255. It is highly advisable that you do a full stop before

changing directions.

6.270 Happy Lab

4.5 Standard Positional Servos

Background Info: Positional Servos are unique because as the name suggest, you can actively set the angular position of

its output. The Servo has an internal potentiometer (a clever name for a variable resistor). There is a different resistance

value for each positional output.

 Although it is pretty neat to track the position of a servo output, there is one significant drawback. Servos can

only turn from 0 to 180 degrees. Which means a positional servo cannot be geared without changing its internal

structure. For this limitation, servos are incredibly strong but very slow. This follows the same rule as a DC Motor’s

Torque and RPM tradeoff. Servos are generally high torque and low RPM.

What the DC motor lacks in power and accuracy, the servo motor excels in these quality.

Wiring:

 Fortunately, there is no need to wire anything. However, we should be careful what each wire is. Generally very

dark wires indicate GND. Power is usually depicted as RED. For the Servos you’re getting this year, the color scheme is:

BROWN (GND), RED(PWR) and Orange(Signal).

 Remember that Servos have a specific set of ports in the happy board. Refer to box #10 on Intro to HappyBoard.

Make sure that you align GND, PWR, and signal when connecting the servo.

6.270 Happy Lab

Programming

Use happytest to try see if your servo works.

Alternatively, you can try writing your own snippet on user/robot/umain.c

The command to control servos is: servo_set_pos(ServoPort#, Position). ServoPort ranges from 0 to 5. Position ranges

from 0 to 511.

NOTE: Not all servos are alike. Be very careful about setting extreme positions near 0 or near 511 - this may be outside
the motors position range, causing it to stall and eventually burn out!

6.270 Happy Lab

4.6 IR LED and Phototransistor

LEFT: IR LED(2) + Phototransistor(1) Used as a wide break beam RIGHT: Used as a Line Follower/Light Follower

Background Info: The IR LED emits Infrared Light and the phototransistor receives those emissions either directly or

through a reflection. The images above illustrate how these sensors are commonly used. The phototransistor is an

analog input sensor so they can only be placed on pins 8-23.

The real sensor in the pair is the phototransistor which is sensitive to light. The more light that the phototransistor

receivies, the lower its internal resistance will be. Similarly, the less light is available, the higher its internal resistance

until no current can flow. The happyboard then translates the flow of current through varying internal resistances as

analog values.

Although ambient lighting definitely affects the performance of the sensor and the analog values, the interaction

between the IR-LED and phototransistor should give a significant difference to cancel out ambient lighting.

Wiring: If you haven’t noticed it yet, you’ll see that breakbeam encoders introduced much earlier are essentially a pair of

IR LED and Phototransistors. Which means the wiring is going to be very similar.

6.270 Happy Lab

Programming: Reading analog values is called by the command analog_read(Port_Number)

Use happytest to try see if your sensor works.

Try the following code.

Note that 500 was an arbitrary value. You must figure out through testing how to best separate the values to determine

whether the Infrared beam is broken beam or not.

When using the sensor as a break beam, use the holes in the Lego pieces to perfectly align the sensors.

Supplemental: I hope you realize the power of the IR_LED and Phototransistor sensor. When it acts as a simple

breakbeam, the analog values are easily seperable

But! You can use the varying analog values as an advantage. In this year’s competition line following is pretty important.

You can use an array of IR LED & Phototransistors to follow a line as well as use proportional control! Be creative and

Goodluck!

6.270 Happy Lab

Supplemental 4.7 Sharp IR Distance Sensor

Background Info: A sharp IR distance sensor is a great way of measuring distances to walls or objects. A near infrared-

light is emitted from box #1 and a detector on box#2 measures the angle of spot that the emitter projects on the wall.

Sharp Distance sensors comes in different specifications The sharp distance sensor

(http://www.sharpsma.com/webfm_send/1487) has a range from 8” to 60”. It is important to note that this sensor

provides its own analog input. Which means you can only put this sensor on analog ports 20-23 and ensuring that the

corresponding pull-up resistor (Box #12 on Intro to HappyBoard) is turned OFF.

Wiring: Looking at box #3, from left to right it is Signal, GND, VCC.

Remember that you can only put these sensors on ports 20-23 where you can turn off the pull-up resistor.

(Alternatively, you can use the other ports ONLY if you go into the PCB board and manually remove the pullup-resistor

trace).

You can check and make sure that you soldered the correct wires by putting a camera right on top of the IR sensor to

see that an infrared is actually being emitted.

Programming: Before the IR Sensor can be useful, we need to calibrate our IR Sensors. Plug anywhere from ports 20-23.

6.270 Happy Lab

IR Distance sensor calibration:

Navigate to user/irdistcal/irdist.cal.c Notice that there’s an entire calibration algorithm written out.

Navigate back to the top of the joyos directory, open Makefile and change USERSRC to

USERSRC = user/irdistcal/irdistcal.c

Upload the program.

For calibration, have these extra materials with you: Tape Measure, cardboard box, and a flat surface.

For best readings, ensure that everything is perpendicular to each other.

Have happyboard connected to your computer. Open up your Serial terminal since there is a routine for calibration.

1) The Calibration will first ask how many samples you want to use for calibration. Use the frob knob to change

the sample size. Try a size of *9*. (More samples is better though) Press GO on your happyboard when ready.

2) It then asks which port your sensor is plugged in. I used port 20. Remember that the pull-up resistor for 20

needs to be turned OFF. Use the frob know to select the port and press GO when ready

6.270 Happy Lab

3) The code will now ask you to record a value @ 10cm away from the wall. Move the sensor to 10cm away from

the wall and press GO when ready.

4) It will keep asking you to do sample sizes at different distances. Keep giving the sensor samples until the

program ends.

5) After the last sample you get to constants of M and C. In this case, I got M = 14421 and C = 10. Pressing GO again

ends the calibration officially.

IR Distance test code

6.270 Happy Lab

Navigate to user/irdisttest/irdisttest.c

There are a few key things to note about this code. Box#1 shows that we have a new library being imported called

<happylib.h>. Box #2 has the constants which we found out through calibration. Box#3 shows the setup routine that is

added right under usetup. Finally Box#4 shows how to get the sensor value itself. Notice that 2.54 is a conversion factor

to INCHES. Irdist_read(PortNumber) actually returns distances in CENTIMETERS.

Upload this code by changing makefile: USERSRC = user/irdisttest/irdisttest.c

When I place mine at 19.5in, I get 19.69in. This is really good! However, when I move much closer, the error increases up

to 3in. This is why it is important to give a greater sample size for the happyboard to calibrate.

6.270 Happy Lab

4.8 Supplemental: Continuous Servos

Background Info: There are many cases when It is preferable to use the low RPM and high torque of a Positional Servo

without the 0-180 degree restriction. Opening up a traditional servo and removing the locking tab, frees up the

restriction but loses its positional accuracy. In essence, it makes the high torque servo operate similar to a DC motor but

with a serious catch.

To make your servo continuous, please read Scott Bezek’s tutotorial on Servo Modification Guide. Note that this is a

Permanent Change.

After doing your modification, you will immediately notice that the servo’s potentiometer is outside. This is marked as

Box#1 on the image above. The potentiometer essentially sets the “center” of between turning Clockwise or

Counterclockwise. Remember that the input to a servo ranges from 0-511. An off-the-shelf servo will have its

potentiometer “center” at 256. However, once you take the servo apart, you will change this numerical center.

Why is it a problem? Suppose that the potentiometer is set all the way at one end. The new numerical center is at 511

(or 0 depending on which end). Which means, no matter what signal command you set from 0-511, the servo will always

spin in the same direction.

It is important to calibrate to mechanically calibrate it so that it returns to a numerical center of 256.

6.270 Happy Lab

Wiring

Box#2 on the image above shows that the continuous servo wires the same as a traditional positional servo.

Calibrating a Continuous Servo

Upload the following program:

Move around the potentiometer until the servo completely halts. It is at a very precise location so be careful. Notice that

overshooting in either direction causes the center to change which in turn rotates the servo output.

When you finally found the center of the potentiometer, grab a hot glue and put this in place.

Programming a Servo

The programming of a continuous servo is essentially the same as a positional servo. After calibration, your servo now

acts exactly as a DC motor with pseudo-PWM qualities. “pseudo” because the servo itself has a high proportional gain

which makes noticeable speed changes only near the center value of 256. You should be very careful setting values near

256 because the potentiometer center could potentially drift with vibration.

servo_set_pos(#Port, #Value)

Values from 0-255 spin the servo in the negative direction with 0 as the greatest value.

Values from 257-511 spins the servo in the positive direction with 511 as the greatest value.

servo_disable(#port)

This year, servo_disabled() is a new command which completely halts the motion of the continuous servo no matter

where the numerical center is.

6.270 Happy Lab

Step 5.0 Final TIPS

The purpose of happy lab is to get you going as fast as possible by walking you step by step. BUT! There is still plenty of

material left to cover.

Here are some final tips:

1. Go to Lectures! There’s only 8 of them over the span of 5 days. You will get everything you need to know in terms of

background knowledge in these lectures.

2. READ! There’s a lot of material on the 6.270 website about almost everything need to succeed in the class and

competition. The 2009 6.270 course notes are still applicable. Make sure you read through the mechanical sections

of the notes. You can also find more about the JoyOS library on the main 6.270 websites. For example, we didn’t

cover how to do digital_write(Port#) but all of these information are available in the library.

3. Go to required LABS! – You get an instant jump start and organizers are there to make sure you never make the

mistake they did.

4. Go to LAB anyway! Typically, the people who succeed and get a lot out of 6.270 are those who put in the extra time

to be in lab. Actually, all past winners have been in lab at least 10 hours a day, every day.

5. ASK Questions! Are you stumped? Ask questions ASAP. There’s no need to brood over a problem when an organizer

who knows the answer is only 10ft away.

Luke O’Malley’s Tips:

6. You must be able to step back and take a deep breath. Throughout the month take some time to explore Boston,

see a movie, go to the museum, etc. It is easy to lose site of your project when it is what you are

living and breathing everyday. Some of my best ideas for our robot came from getting out and changing pace.

7. Being frantic and rushing a decision is dangerous. You are all engineers. Know why you are doing what is you are

doing and be able to explain your decision. This is particularly relevant to trying to find bugs in code.

8. Use version control. The integrity of large scale software projects cannot be guaranteed without it. It will provide

peace of mind and save you from potentially devastating code bugs. My team had working

bits of code that kept getting modified throughout the month until we had no working code. When using git, take

advantage of the notes. Make sure to mark milestones.

9. Don't put everything in one master file. Segment your code.

10. Use meaningful variable names and comment well. 30 days from now you want to know why you put in that weird

constant that doesn't seem to do anything.

11. Have a game plan. You must make sure your team works in concert. All of the parts have to move together. Give

your programmer a basic chassis to test code on. There is no reason why coding should hold up construction and

vice versa. This happened to my team and was lethal. Go for milestones. Build upon success. Get a robot that can

6.270 Happy Lab

navigate to given coordinates. Then get a robot that can avoid collision. Tie these functions together. Draw, talk, and

flush out ideas with your team. A lot of MIT students are very good at doing everything inside their heads and

working alone. You are a single cog in a bigger machine for the month.

12. If you are going to use threading, test thoroughly for race conditions and resource competition. You will never be

able to predicate all of the behaviors. Threading is great for utilizing down time (ie. While

driving to a destination, you could be doing collision detection and objective analysis).

13. Test often. A specific test suite/procedure for validation of your code and mechanics could help identify bugs and

establish a means for comparing different iterations of your robot.

14. Abstract. Functions are your friend. You want to put in the time now for the foundation so you can worry about the

high level stuff as the final competition approaches.

6.270 Happy Lab

Appendix A: Pull-Up Resistors

The Following Images are from: http://www.seattlerobotics.org/encoder/mar97/basics.html

Logic Gates are highly susceptible to electrical noise. For example, the Image below does not have a pull-up resistor So

its logic value is floating and can alternate between (1 or 0).

The Configuration Below partially solves the problem because Vcc always provides a HIGH value., but when the switch is

closed, it causes a short.

Now with a pull-up/pull down resistor, the logic gates always have a value on both cases when the switch is ON and OFF.

Left: Pull Up Resistor;

When Switch is off,

Logic receives HIGH

input

Right: Pull Down

Resistor; When

Switch is off, Logic

receives LOW as

input

http://www.seattlerobotics.org/encoder/mar97/basics.html

6.270 Happy Lab

Appendix B: Using the Motor Curve as a Design Tool

Suppose we have one of the linkages of a dumping mechanism. The motor needs to overcome a torque of

 . Let us now assume this torque is 0.25Nm.

If we were to plot this torque on our motor curve above (See Graph), we can definitely see that 0.5N-m is out of the

scale. The motor cannot rotate against this torque at all.

This is where Gear Ratios come into play. Gear Ratios can scale and reflect a lower torque on the motor. But how

exactly do we scale our Gear Ratios given a load torque?

6.270 Happy Lab

First we must understand what these values mean

Free Speed: RPM of motor at 0 torque.
Free Current: Current the motor draws at 0 Torque
Stall Current: Current the motor draws at stall torque.
Stall Torque: Torque at which the motor has 0 RPM. Motor does 0 work.

Looking at the Motor Curve above, a reflected torque of ~25% of the stall gives maximum motor efficiency. So We need
to find a value for the Gear Ratio such that the reflected torque on the motor is
Required Reflected Torque = 0.25*Stall Torque = 0.0014675 N-m

Remember that

So Our Gear Ratio should be:

With this gear Ratio, Our Torque output is now 170 times greater than before, but out RPM output is 170 times less.

Torque output at End of Gearbox = 0.251Nm RPM Output at End of gearbox =84RPM

But the Tradeoff is well worth it because we can carry a heavy load at a decent RPM.

HOW PWM Affects Motor Performance:

PWM (Pulse-Width Modulation) – Fast ON and OFF switching of the motor. Depending on how long the motor is turned

ON during each cycle, the average voltage sent to the motor can be anywhere from 0%-100% of the original. A 75% duty

cycle means that the motor is Turned ON 75% of the time (average sent voltage is 75%). In essence, PWM scales the

voltage sent to the motor.

Using PWM scales your operating voltage down. If you operate at 50% voltage (50% duty cycle) your total output torque

and speed goes down by 50%. You do not get extra torque with a lower PWM! When you are calculating gear ratios,

take note at which PWM duty cycle you are operating the motor.

This is why engineers usually scale the gear ratio even further from the exact calculated value since we want to have

an extra safety and confidence factor. Remember also that the motor battery also decreases during operation.

Further Reading: Understanding the DC Motor: http://lancet.mit.edu/motors/motors3.html

http://lancet.mit.edu/motors/motors3.html

